Quelle est la probabilité de vivre au-delà de 110 ans ?

Le record de 122 ans et 5 mois établi en 1997 par la Française Jeanne Calment tient toujours. Or, de savants calculs laissent croire qu’une vie encore plus longue est possible. 

Jamie Garbutt / Getty Images

L’auteur est professeur adjoint de sciences de la décision à HEC Montréal.

La doyenne présumée de l’humanité, la Japonaise Kane Tanaka, s’est éteinte au mois d’avril 2022, dans son pays natal, à l’âge de 119 ans. Malgré sa longévité spectaculaire, elle n’a pas réussi à dépasser le record établi par la Française Jeanne Calment, qui serait décédée à 122 ans et 5 mois (ou précisément 44 724 jours), en 1997, selon les registres officiels.

Ce record a-t-il des chances d’être battu ?

Mon domaine d’expertise, une branche de la statistique qui traite de la modélisation d’événements rares, permet de fournir des éléments de réponse à ce type de questions.

Combien de candidats pour un nouveau record du monde ?

Il faut comprendre que le phénomène à l’étude est extrêmement rare : selon le dernier recensement, seule 0,03 % de la population canadienne serait centenaire, soit un peu plus de 9 500 personnes. C’est moins qu’au Japon, qui compte le plus grand nombre de gens âgés au monde. En effet, près de 90 000 personnes de plus de 100 ans habitaient l’archipel nippon en 2021, d’après les estimations officielles de mars 2022.

Seulement une poignée de ces centenaires, moins d’un sur mille, atteindra 110 ans. Les personnes qui vivent au-delà de cet âge, les « supercentenaires », sont donc exceptionnelles.

Les modèles statistiques à la rescousse

Afin de savoir si le record de longévité sera pulvérisé ou pas, il faut bâtir des modèles statistiques qui décrivent la mortalité au-delà de 110 ans.

Pour ce faire, nous avons besoin de données de qualité. L’âge au moment du décès des supercentenaires doit être validé en analysant les registres et les certificats de naissance, notamment, de manière à relever des incohérences. Cela implique un travail d’archiviste et les erreurs sont fréquentes (mauvaise transcription, usurpation d’identité, nécronyme). Plusieurs candidatures sont d’ailleurs rejetées, faute de preuves suffisantes pour établir de manière certaine leur identité ou leur date de naissance. Il y a nettement plus de femmes que d’hommes supercentenaires, mais ce déséquilibre tend à diminuer dans plusieurs pays, dont le Royaume-Uni.

La principale source d’information pour mes travaux de recherche est la Base de données internationale sur la longévité (IDL), fruit d’une collaboration de gérontologues et de démographes qui ont recensé l’âge au décès de plus de 1 041 supercentenaires de plusieurs pays d’Europe centrale, du Japon, du Canada et des États-Unis. La validation des données nécessite de remonter 150 ans en arrière, une période à laquelle l’administration et le recensement étaient de qualité variable. Les pays qui fournissent des données ont des équipes de démographes subventionnés qui travaillent activement sur la longévité, ainsi que des archives qui permettent la validation. Sans système rigoureux, impossible d’exploiter les données.

Une fois que nous avons acquis les informations nécessaires, nous pouvons alors nous attaquer à la modélisation des durées de vie. Le modèle statistique le plus simple qui soit compatible avec les données liées aux personnes vivant au-delà de 110 ans équivaut grossièrement au lancer d’une pièce de monnaie. Si la pièce tombe sur pile, ce qui arrive une fois sur deux, la personne survivra jusqu’à son prochain anniversaire ; autrement, elle décédera dans l’année.

Ce modèle implique aussi que le risque de mourir est stable et ne dépend pas de l’historique de la personne. Selon nos calculs, l’espérance de vie d’une personne supercentenaire serait d’environ un an et cinq mois, une période très courte.

Survivre de 110 jusqu’à 122 ans, comme Jeanne Calment, reviendrait donc à obtenir consécutivement 12 fois pile, un événement qui survient moins d’une fois sur un million quand on lance 12 pièces. À la lumière du nombre de supercentenaires vivants, il n’est pas surprenant que le record de Jeanne Calment tienne toujours après un quart de siècle.

Jeanne Calment, indétrônable ?

Notre question de départ est ainsi d’autant plus intrigante : le record de Jeanne Calment sera-t-il battu un jour, et le cas échéant, à quel âge s’établira-t-il ? Pour répondre à cette question, nous avons besoin des projections démographiques du nombre de supercentenaires qui tiennent compte de l’augmentation de la population mondiale.

Des chercheurs de l’Université de Washington ont conclu, sur la base du modèle du lancer de la pièce de monnaie et de ces projections, qu’il y a de fortes chances de voir le record de Jeanne Calment tomber d’ici 2100, mais qu’il est peu plausible que la personne couronnée dépasse les 130 ans.

L’espérance de vie humaine est-elle limitée ?

Plusieurs études scientifiques ont avancé, dans les dernières années, que la longévité humaine serait limitée. Ces études ont souvent une caractéristique en commun : elles ignorent la méthode selon laquelle les données sont collectées, ce qui biaise leurs conclusions. On peut d’office écarter tout seuil inférieur aux âges observés. Si l’espérance de vie varie d’un pays à l’autre, la longévité est une caractéristique intrinsèque de l’espèce humaine. Il est donc illogique qu’un Néerlandais ne puisse vivre au-delà de 114 ans alors qu’un Japonais a atteint l’âge de 117 ans.

Si on compare la vie à une course de fond, une limite à la longévité serait l’équivalent d’un obstacle infranchissable en fin de parcours. Une explication plus logique d’un point de vue biologique est que la personne s’arrête en chemin une fois ses ressources épuisées.

L’extrapolation de l’âge maximum est entachée de beaucoup d’incertitude en raison du faible nombre de supercentenaires dont l’âge au décès a été validé. S’il existe une limite à l’espérance de vie, notre analyse de plusieurs bases de données fiables montre qu’elle se situe bien au-delà de l’âge de Jeanne Calment et qu’il serait étonnant qu’elle soit inférieure à 130 ans.

L’absence de limite ne veut pas dire qu’une personne pourrait vivre éternellement : s’il est concevable d’obtenir pile lors de n’importe quel lancer d’une pièce de monnaie, il est en revanche peu vraisemblable d’avoir une longue séquence où chaque lancer tombe du même côté.

Même avec la croissance de la population mondiale, la faible espérance de vie des supercentenaires et le risque élevé de mortalité de ces derniers restreignent la possibilité de fracasser le record de Calment.

Seul le temps nous dira si ce maximum sera battu. L’augmentation du nombre de centenaires et du nombre de pays offrant des données historiques fiables et validées sur leur population est néanmoins prometteuse pour la suite.

Cet article est republié à partir de La Conversation sous licence Creative Commons.

Laisser un commentaire

Les commentaires sont modérés par l’équipe de L’actualité et approuvés seulement s’ils respectent les règles de la nétiquette en vigueur. Veuillez nous allouer du temps pour vérifier la validité de votre commentaire.

Petite correction. Vous dites : « Survivre de 110 jusqu’à 122 ans, comme Jeanne Calment, reviendrait donc à obtenir consécutivement 12 fois pile, un événement qui survient moins d’une fois sur un million quand on lance 12 pièces. »
La probabilité d’avoir 12 fois pile en lançant 12 pièces est d’une chance sur 4096 et non une chance sur un million.

Répondre

Pour une fois, je suis d’accord avec vous Dr Bonnier!

Scientifiquement vôtre
Claude COULOMBE

P.-S.: Pour ne pas perdre la face (pile ou face 😉), je conseillerais à l’auteur de multiplier par la probabilité de se rendre à 110 ans, ce qui donne environ l’ordre de grandeur annoncé… (2.44E-07, environ 1 chance sur 4 millions)